Low-Swirl DLN Injector for < 5 ppm NO_x Gas Turbines

David Littlejohn¹, Waseem Nazeer², Ken O. Smith² & Robert K. Cheng¹

¹Environmental Energy Technologies Division Lawrence Berkeley National Laboratory, Berkeley, CA

> ²Advanced Combustion Engineering Solar Turbines, San Diego, CA

Work supported by DOE-DER Low Emissions Turbines P. Hoffman, D. Haught, S. Waslo, M. Smith

Current DLN Gas Turbine Engines Use High-Swirl Injectors (HSI)

- □ Centerbody promotes formation of recirculation to entrain and ignite fresh mixture
- ☐ Flame attachment at centerbody rim

Lean Blow-off and Flame Instability Are Barriers to Reaching < 5 ppm NO_x

Combustion and Control Methods to Overcome Combustion Dynamics

- Combustion methods
 - Catalytic combustors
 - Surfaced stabilized combustion
 - \square H₂ addition
- ☐ Control methods
 - Active or passive
 - Quick response sensors and actuators
- □ Both solutions have practical and engineering issues involving compatibility, operation, durability, maintenance and cost

Objective - Improve HSI Performance by Converting to Operate in Low-swirl Mode

■ Low-swirl flame stabilization mechanism

- New concept discovered in 1991 at LBNL from DOE-BES basic research on premixed turbulent combustion
 - Defies recirculation entrainment theory
- Scientific Significance
 - Lacking scientific background for low-swirl flows
 - Challenging modeling and simulation problem
 - Excellent laboratory research tool
- Technological Interest
 - Ultra-lean flames with low NO_x and CO emissions
 - Simple design, 2 US patents
 - Commercialized by Maxon Corp. 2003 for industrial process heat

Flame Stabilization Mechanism Characterized by Laser Diagnostics

- ☐ Flow divergence provides a much more stable mechanism for lean flames than high swirl flows or flame holders
- ☐ Flame brush propagates at turbulent flame speed that increases linearly with turbulence intensity
 - flashback conditionspredictable
- ☐ Swirl intensity controls flame lift off position

Low Swirl Generates a Lifted Flame

This burner is made of PVC and plastic to showcase the uniqueness of LSB

- □Lifted flame does not transfer heat to burner throat
- □Patented swirler has a center channel instead of a centerbody
- ☐Can be made from low cost materials

Solid Scientific Foundation Led to Equation for Scaling to Different Sizes

$$S = \frac{2}{3} \tan \alpha \frac{1 - R^3}{1 - R^2 + [m^2(1/R^2 - 1)^2]R^2}$$

rrrrrr

☐ Expression uses easily measurable parameters

- □ Ratio of center channel radius to burner radius, $R = R_c/R_b$
- floor Straight or curved vane with angles, lpha
- Ratio of mass flow rates through center channel and swirl annulus, m
 - Determine m for different screens through pressure drop measurements

Maxon Commercialized LSB & Identified Significant Economic and Technical Advantages

- ☐ Design scales by governing equations
 - A radical departure from experimentation approach
- ☐ Size compatible to existing equipment
- ☐ Can be fabricated with no initial re-tooling or new patterns required fewer parts from common materials
- ☐ Use existing control for conventional high NO_x burners
- ☐Flame is not in contact with burner tip
 - No thermal stresses to burner that cause metal fatigue
- □Lower operational cost, and greater ease of operation, thanks to simpler combustion process

Current Status of LSB Development

- ☐ Partnership with more than seven companies
- □ Burner prototypes from 8 kW (2.5 cm i.d.) to 7 MW (30 cm i.d.) all with ultra-low NO_x capability (< 9 ppm NO_x @ 3% O₂)
- □ Demonstrated 60:1 turndown
- □ Demonstrated multi-fuel capability (pure H₂ and other H₂/HC fuel blends)
- ☐ Supported by DOE-Office of Industrial Technologies
- □ Prior supports from Calif. Inst. Of Energy Efficiency and SoCalGas

Adaptation to Gas Turbines

Strives to capture the same benefits and advantages for mid-size Engines

Low-swirl Combustion Exploits Aerodynamics to Overcome the Low-Emissions Barriers

Transferring Low-Swirl Combustion to Gas Turbines

- □ Reconfigure SoLoNOx injector to low-swirl operation
 - □ Replace centerbody with perforated S.S. screen
 - □ Apply guidelines for LSB 0.4 < S < 0.5, I_i < 1.5 D

Configured LSI in the Laboratory at Atmospheric Pressure and Low Velocities

- □ Using different screens to optimize flame lift off height in 6-8 m/s flows
 □ Swirl numbers HSI : S = 0.5, HSI: S > 0.7
- ☐ Small difference in swirl makes a huge difference in operating principle

LSI for High Temperature High Pressure Rig-tests

- □LSI mounted to premixer with +/- 5% and +/- 10% homogeneity
- ☐ Tested in Solar's high pressure rig with an 8" film-cooled louver liner

LSI Rig-Test Conditions

T _o (F)	P _o (atm)	U (ft/s)	Air (lb/sec)	ф	Note
440	5	100	1	0.3 – 0.66	
440	10	100	1.8	0.64 – 0.75	
650	10	120	1.8	0.55 – 0.65	
700	10	170	2.6	0.52- 0.7	Taurus 60 full load
800	15	150	3.0	0.54-0.66	Taurus 70 full load

LSI Achieved < 5 ppm NO_x at Full and Partial Load Conditions

- □ Over 60% NO_x reduction without affecting CO
- ☐ Minimum NO_x ≈ 1 ppm

Absence of Recirculation in LSI May Be Key to Explain NO_x Reduction

☐ Residence time of hot products greatly reduced

Other Attributes of LSI

- ■No flame shift or flashback
- ☐Flame robust to withstand large swing in inlet conditions
- □LSI has yet to encounter oscillations towards lean blow-off
- ☐ Emissions not sensitive to degree of mixedness or pilot

Conclusions on Rig-Test of Low-Swirl Injector Prototype

- □ Low-swirl combustion method verified under elevated T and P conditions of gas turbines
- ☐ Fully compatible with existing mid-size engines
 - LSI prototypes converted from DLN hardware
 - very low add-on cost expected for implementation
- □ Lowest emissions (< 2 ppm NO_x) matching those of catalytic combustors
 - No compromise on duty cycle time, and a much less elaborate and lower cost alternative
 - \square NO_x < 5 ppm conditions far from LBO & oscillations
- ☐ Shows good promise to maintain low emissions under partial load
 - does not required staging to maintain low emissions under partial load

LSI Development Plan for Mid-Size Engines

□ Current project

- ☐ Address operational issues piloting, up-load and off-load protocol
 - □ Emissions, lean blow-off, flame stability, flame spread, and light-off
- ☐ Refinement of prototype injector design through single LSI rig-tests and laboratory studies (Target completion 12/04)

□ Future Plan

- ☐ Construct a set of LSIs leading to engine tests and development of scaling guideline
- ☐ Select target engine and finalize preproduction design
- ☐ Prepare a set of LSI and conduct rig tests
- ☐ Develop engine test program and objectives

Planned RD&D Activities on Low-Swirl Combustion

□ LSB

- Process heat develop enhancement methods with Maxon: staging, internal FGR and preheat
- Boilers & petroleum refining continue testing with potential development and commercialization partners

□ LSI

- Mid-size turbines planned engine test in Winter 2004
- Micro & utility turbines seeking research & development partnerships and opportunities
- ☐ Enabling technologies
 - Partial reforming seeking demonstration partners
 - Alternate fuels demonstrated firing with H₂, HC/H₂, biomass & low-Btu fuels. Seeking R&D opportunities
 - Prevaporized premixed liquid fuels initiated research at Nat'l Aerospace Lab. of Japan and discussion with U of Wash.
 - Combined heat & power generation LSB+LSI: seeking R&D opportunities

